Magnetic Frenet curves on para-Sasakian manifolds

نویسندگان

چکیده

The study of magnetic curves, seen as solutions Lorentz equation, has been done mainly in 3-dimensional case, motivated by theoretical physics. Then it was extended higher dimensions, for instance K?hlerian or Sasakian frame. This paper deals the first time literature with Frenet curves dimensional paracontact context. Several classifications are provided here different types on para-Sasakian manifolds. Some relations between and Lorenz force obtained these spaces examples associated to fields constructed. explicit equations classical manifold (R2n+1, ?, 1) given at end.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

متن کامل

On Para-sasakian Manifolds

In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an ndimensional (n>3) conformally symmetric para-Sasakian manifold is conforma...

متن کامل

On Concircularly Φ−recurrent Para-sasakian Manifolds

A transformation of an n-dimensional Riemannian manifold M , which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation. A concircular transformation is always a conformal transformation. Here geodesic circle means a curve in M whose first curvature is constant and second curvature is identically zero. Thus, the geometry of concircular transformat...

متن کامل

On Lightlike Geometry of Para-Sasakian Manifolds

We study lightlike hypersurfaces of para-Sasakian manifolds tangent to the characteristic vector field. In particular, we define invariant lightlike hypersurfaces and screen semi-invariant lightlike hypersurfaces, respectively, and give examples. Integrability conditions for the distributions on a screen semi-invariant lightlike hypersurface of para-Sasakian manifolds are investigated. We obtai...

متن کامل

Radical Transversal Lightlike Submanifolds of Indefinite Para-sasakian Manifolds

In this paper, we study radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds giving some non-trivial examples of these submanifolds. Integrability conditions of distributions D and RadTM on radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2305479b